Copied to
clipboard

G = C62.256C23order 288 = 25·32

101st non-split extension by C62 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.256C23, (C6×D4)⋊3S3, (C3×C12)⋊13D4, C124(C3⋊D4), C6.130(S3×D4), C35(D63D4), (C2×C12).154D6, C42(C327D4), (C22×C6).96D6, C625C419C2, C3224(C4⋊D4), C12⋊Dic323C2, (C6×C12).145C22, (C2×C62).73C22, C6.107(D42S3), C2.17(C12.D6), (D4×C3×C6)⋊7C2, (C2×C3⋊S3)⋊13D4, C2.26(D4×C3⋊S3), (C2×D4)⋊4(C3⋊S3), (C3×C6).284(C2×D4), C6.125(C2×C3⋊D4), C23.14(C2×C3⋊S3), (C2×C327D4)⋊11C2, C2.14(C2×C327D4), (C3×C6).153(C4○D4), (C2×C6).273(C22×S3), C22.60(C22×C3⋊S3), (C22×C3⋊S3).93C22, (C2×C3⋊Dic3).92C22, (C2×C4×C3⋊S3)⋊3C2, (C2×C4).50(C2×C3⋊S3), SmallGroup(288,795)

Series: Derived Chief Lower central Upper central

C1C62 — C62.256C23
C1C3C32C3×C6C62C22×C3⋊S3C2×C4×C3⋊S3 — C62.256C23
C32C62 — C62.256C23
C1C22C2×D4

Generators and relations for C62.256C23
 G = < a,b,c,d,e | a6=b6=c2=e2=1, d2=b3, ab=ba, cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=a3c, ede=b3d >

Subgroups: 1068 in 282 conjugacy classes, 79 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C4⋊D4, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C4⋊Dic3, C6.D4, S3×C2×C4, C2×C3⋊D4, C6×D4, C4×C3⋊S3, C2×C3⋊Dic3, C2×C3⋊Dic3, C327D4, C6×C12, D4×C32, C22×C3⋊S3, C2×C62, D63D4, C12⋊Dic3, C625C4, C2×C4×C3⋊S3, C2×C327D4, D4×C3×C6, C62.256C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊S3, C3⋊D4, C22×S3, C4⋊D4, C2×C3⋊S3, S3×D4, D42S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, D63D4, D4×C3⋊S3, C12.D6, C2×C327D4, C62.256C23

Smallest permutation representation of C62.256C23
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 15 58 33 39 61)(2 16 59 34 40 62)(3 17 60 35 41 63)(4 18 55 36 42 64)(5 13 56 31 37 65)(6 14 57 32 38 66)(7 22 123 116 29 140)(8 23 124 117 30 141)(9 24 125 118 25 142)(10 19 126 119 26 143)(11 20 121 120 27 144)(12 21 122 115 28 139)(43 92 67 73 101 50)(44 93 68 74 102 51)(45 94 69 75 97 52)(46 95 70 76 98 53)(47 96 71 77 99 54)(48 91 72 78 100 49)(79 128 103 109 137 86)(80 129 104 110 138 87)(81 130 105 111 133 88)(82 131 106 112 134 89)(83 132 107 113 135 90)(84 127 108 114 136 85)
(2 6)(3 5)(7 28)(8 27)(9 26)(10 25)(11 30)(12 29)(13 63)(14 62)(15 61)(16 66)(17 65)(18 64)(19 118)(20 117)(21 116)(22 115)(23 120)(24 119)(31 35)(32 34)(37 60)(38 59)(39 58)(40 57)(41 56)(42 55)(43 102)(44 101)(45 100)(46 99)(47 98)(48 97)(49 52)(50 51)(53 54)(67 68)(69 72)(70 71)(73 93)(74 92)(75 91)(76 96)(77 95)(78 94)(79 135)(80 134)(81 133)(82 138)(83 137)(84 136)(86 90)(87 89)(103 107)(104 106)(109 132)(110 131)(111 130)(112 129)(113 128)(114 127)(121 124)(122 123)(125 126)(139 140)(141 144)(142 143)
(1 105 33 88)(2 106 34 89)(3 107 35 90)(4 108 36 85)(5 103 31 86)(6 104 32 87)(7 74 116 44)(8 75 117 45)(9 76 118 46)(10 77 119 47)(11 78 120 48)(12 73 115 43)(13 109 37 79)(14 110 38 80)(15 111 39 81)(16 112 40 82)(17 113 41 83)(18 114 42 84)(19 99 26 96)(20 100 27 91)(21 101 28 92)(22 102 29 93)(23 97 30 94)(24 98 25 95)(49 144 72 121)(50 139 67 122)(51 140 68 123)(52 141 69 124)(53 142 70 125)(54 143 71 126)(55 136 64 127)(56 137 65 128)(57 138 66 129)(58 133 61 130)(59 134 62 131)(60 135 63 132)
(1 52)(2 53)(3 54)(4 49)(5 50)(6 51)(7 80)(8 81)(9 82)(10 83)(11 84)(12 79)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 132)(20 127)(21 128)(22 129)(23 130)(24 131)(25 134)(26 135)(27 136)(28 137)(29 138)(30 133)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)(37 73)(38 74)(39 75)(40 76)(41 77)(42 78)(55 91)(56 92)(57 93)(58 94)(59 95)(60 96)(61 97)(62 98)(63 99)(64 100)(65 101)(66 102)(85 144)(86 139)(87 140)(88 141)(89 142)(90 143)(103 122)(104 123)(105 124)(106 125)(107 126)(108 121)(109 115)(110 116)(111 117)(112 118)(113 119)(114 120)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,15,58,33,39,61)(2,16,59,34,40,62)(3,17,60,35,41,63)(4,18,55,36,42,64)(5,13,56,31,37,65)(6,14,57,32,38,66)(7,22,123,116,29,140)(8,23,124,117,30,141)(9,24,125,118,25,142)(10,19,126,119,26,143)(11,20,121,120,27,144)(12,21,122,115,28,139)(43,92,67,73,101,50)(44,93,68,74,102,51)(45,94,69,75,97,52)(46,95,70,76,98,53)(47,96,71,77,99,54)(48,91,72,78,100,49)(79,128,103,109,137,86)(80,129,104,110,138,87)(81,130,105,111,133,88)(82,131,106,112,134,89)(83,132,107,113,135,90)(84,127,108,114,136,85), (2,6)(3,5)(7,28)(8,27)(9,26)(10,25)(11,30)(12,29)(13,63)(14,62)(15,61)(16,66)(17,65)(18,64)(19,118)(20,117)(21,116)(22,115)(23,120)(24,119)(31,35)(32,34)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)(43,102)(44,101)(45,100)(46,99)(47,98)(48,97)(49,52)(50,51)(53,54)(67,68)(69,72)(70,71)(73,93)(74,92)(75,91)(76,96)(77,95)(78,94)(79,135)(80,134)(81,133)(82,138)(83,137)(84,136)(86,90)(87,89)(103,107)(104,106)(109,132)(110,131)(111,130)(112,129)(113,128)(114,127)(121,124)(122,123)(125,126)(139,140)(141,144)(142,143), (1,105,33,88)(2,106,34,89)(3,107,35,90)(4,108,36,85)(5,103,31,86)(6,104,32,87)(7,74,116,44)(8,75,117,45)(9,76,118,46)(10,77,119,47)(11,78,120,48)(12,73,115,43)(13,109,37,79)(14,110,38,80)(15,111,39,81)(16,112,40,82)(17,113,41,83)(18,114,42,84)(19,99,26,96)(20,100,27,91)(21,101,28,92)(22,102,29,93)(23,97,30,94)(24,98,25,95)(49,144,72,121)(50,139,67,122)(51,140,68,123)(52,141,69,124)(53,142,70,125)(54,143,71,126)(55,136,64,127)(56,137,65,128)(57,138,66,129)(58,133,61,130)(59,134,62,131)(60,135,63,132), (1,52)(2,53)(3,54)(4,49)(5,50)(6,51)(7,80)(8,81)(9,82)(10,83)(11,84)(12,79)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,132)(20,127)(21,128)(22,129)(23,130)(24,131)(25,134)(26,135)(27,136)(28,137)(29,138)(30,133)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(61,97)(62,98)(63,99)(64,100)(65,101)(66,102)(85,144)(86,139)(87,140)(88,141)(89,142)(90,143)(103,122)(104,123)(105,124)(106,125)(107,126)(108,121)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,15,58,33,39,61)(2,16,59,34,40,62)(3,17,60,35,41,63)(4,18,55,36,42,64)(5,13,56,31,37,65)(6,14,57,32,38,66)(7,22,123,116,29,140)(8,23,124,117,30,141)(9,24,125,118,25,142)(10,19,126,119,26,143)(11,20,121,120,27,144)(12,21,122,115,28,139)(43,92,67,73,101,50)(44,93,68,74,102,51)(45,94,69,75,97,52)(46,95,70,76,98,53)(47,96,71,77,99,54)(48,91,72,78,100,49)(79,128,103,109,137,86)(80,129,104,110,138,87)(81,130,105,111,133,88)(82,131,106,112,134,89)(83,132,107,113,135,90)(84,127,108,114,136,85), (2,6)(3,5)(7,28)(8,27)(9,26)(10,25)(11,30)(12,29)(13,63)(14,62)(15,61)(16,66)(17,65)(18,64)(19,118)(20,117)(21,116)(22,115)(23,120)(24,119)(31,35)(32,34)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)(43,102)(44,101)(45,100)(46,99)(47,98)(48,97)(49,52)(50,51)(53,54)(67,68)(69,72)(70,71)(73,93)(74,92)(75,91)(76,96)(77,95)(78,94)(79,135)(80,134)(81,133)(82,138)(83,137)(84,136)(86,90)(87,89)(103,107)(104,106)(109,132)(110,131)(111,130)(112,129)(113,128)(114,127)(121,124)(122,123)(125,126)(139,140)(141,144)(142,143), (1,105,33,88)(2,106,34,89)(3,107,35,90)(4,108,36,85)(5,103,31,86)(6,104,32,87)(7,74,116,44)(8,75,117,45)(9,76,118,46)(10,77,119,47)(11,78,120,48)(12,73,115,43)(13,109,37,79)(14,110,38,80)(15,111,39,81)(16,112,40,82)(17,113,41,83)(18,114,42,84)(19,99,26,96)(20,100,27,91)(21,101,28,92)(22,102,29,93)(23,97,30,94)(24,98,25,95)(49,144,72,121)(50,139,67,122)(51,140,68,123)(52,141,69,124)(53,142,70,125)(54,143,71,126)(55,136,64,127)(56,137,65,128)(57,138,66,129)(58,133,61,130)(59,134,62,131)(60,135,63,132), (1,52)(2,53)(3,54)(4,49)(5,50)(6,51)(7,80)(8,81)(9,82)(10,83)(11,84)(12,79)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,132)(20,127)(21,128)(22,129)(23,130)(24,131)(25,134)(26,135)(27,136)(28,137)(29,138)(30,133)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(61,97)(62,98)(63,99)(64,100)(65,101)(66,102)(85,144)(86,139)(87,140)(88,141)(89,142)(90,143)(103,122)(104,123)(105,124)(106,125)(107,126)(108,121)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,15,58,33,39,61),(2,16,59,34,40,62),(3,17,60,35,41,63),(4,18,55,36,42,64),(5,13,56,31,37,65),(6,14,57,32,38,66),(7,22,123,116,29,140),(8,23,124,117,30,141),(9,24,125,118,25,142),(10,19,126,119,26,143),(11,20,121,120,27,144),(12,21,122,115,28,139),(43,92,67,73,101,50),(44,93,68,74,102,51),(45,94,69,75,97,52),(46,95,70,76,98,53),(47,96,71,77,99,54),(48,91,72,78,100,49),(79,128,103,109,137,86),(80,129,104,110,138,87),(81,130,105,111,133,88),(82,131,106,112,134,89),(83,132,107,113,135,90),(84,127,108,114,136,85)], [(2,6),(3,5),(7,28),(8,27),(9,26),(10,25),(11,30),(12,29),(13,63),(14,62),(15,61),(16,66),(17,65),(18,64),(19,118),(20,117),(21,116),(22,115),(23,120),(24,119),(31,35),(32,34),(37,60),(38,59),(39,58),(40,57),(41,56),(42,55),(43,102),(44,101),(45,100),(46,99),(47,98),(48,97),(49,52),(50,51),(53,54),(67,68),(69,72),(70,71),(73,93),(74,92),(75,91),(76,96),(77,95),(78,94),(79,135),(80,134),(81,133),(82,138),(83,137),(84,136),(86,90),(87,89),(103,107),(104,106),(109,132),(110,131),(111,130),(112,129),(113,128),(114,127),(121,124),(122,123),(125,126),(139,140),(141,144),(142,143)], [(1,105,33,88),(2,106,34,89),(3,107,35,90),(4,108,36,85),(5,103,31,86),(6,104,32,87),(7,74,116,44),(8,75,117,45),(9,76,118,46),(10,77,119,47),(11,78,120,48),(12,73,115,43),(13,109,37,79),(14,110,38,80),(15,111,39,81),(16,112,40,82),(17,113,41,83),(18,114,42,84),(19,99,26,96),(20,100,27,91),(21,101,28,92),(22,102,29,93),(23,97,30,94),(24,98,25,95),(49,144,72,121),(50,139,67,122),(51,140,68,123),(52,141,69,124),(53,142,70,125),(54,143,71,126),(55,136,64,127),(56,137,65,128),(57,138,66,129),(58,133,61,130),(59,134,62,131),(60,135,63,132)], [(1,52),(2,53),(3,54),(4,49),(5,50),(6,51),(7,80),(8,81),(9,82),(10,83),(11,84),(12,79),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,132),(20,127),(21,128),(22,129),(23,130),(24,131),(25,134),(26,135),(27,136),(28,137),(29,138),(30,133),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72),(37,73),(38,74),(39,75),(40,76),(41,77),(42,78),(55,91),(56,92),(57,93),(58,94),(59,95),(60,96),(61,97),(62,98),(63,99),(64,100),(65,101),(66,102),(85,144),(86,139),(87,140),(88,141),(89,142),(90,143),(103,122),(104,123),(105,124),(106,125),(107,126),(108,121),(109,115),(110,116),(111,117),(112,118),(113,119),(114,120)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B4C4D4E4F6A···6L6M···6AB12A···12H
order1222222233334444446···66···612···12
size1111441818222222181836362···24···44···4

54 irreducible representations

dim111111222222244
type++++++++++++-
imageC1C2C2C2C2C2S3D4D4D6D6C4○D4C3⋊D4S3×D4D42S3
kernelC62.256C23C12⋊Dic3C625C4C2×C4×C3⋊S3C2×C327D4D4×C3×C6C6×D4C3×C12C2×C3⋊S3C2×C12C22×C6C3×C6C12C6C6
# reps1121214224821644

Matrix representation of C62.256C23 in GL6(𝔽13)

1200000
0120000
001000
000100
0000112
000010
,
1200000
0120000
0001200
0011200
0000012
0000112
,
100000
0120000
000100
001000
000010
0000112
,
800000
050000
001000
000100
000010
000001
,
010000
100000
0012000
0001200
0000114
000092

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,12,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,12],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,11,9,0,0,0,0,4,2] >;

C62.256C23 in GAP, Magma, Sage, TeX

C_6^2._{256}C_2^3
% in TeX

G:=Group("C6^2.256C2^3");
// GroupNames label

G:=SmallGroup(288,795);
// by ID

G=gap.SmallGroup(288,795);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,219,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=e^2=1,d^2=b^3,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^3*c,e*d*e=b^3*d>;
// generators/relations

׿
×
𝔽